Multilevel Shape Parameterization for Aerodynamic Optimization – Application to Drag and Noise Reduction of Transonic/supersonic Business Jet

نویسندگان

  • Jean-Antoine Désidéri
  • Aleš Janka
چکیده

We present the construction and report on the experimentation of a shapeoptimization method applied to the aerodynamic design of a transonic or supersonic business jet. The main numerical ingredients are: a 3D unstructured-grid compressible-flow finite-volume solver, free-form deformation approach for shape and mesh movement based on self-adaptive and multilevel 3D tensorial Bézier polynomial representations by the degree-elevation technique, and a general genetic or simplex optimizer. In our test-cases, we reduce the pressure drag and, for the supersonic case, a criterion of the noise source of supersonic bang. Our experiments demonstrate the versatility of the free-form deformation approach within an unstructured grid volume discretization, and the cost-efficiency of hierarchical optimization strategies (parameterization degree-enhancement or V-cycles).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Shape Parameterization on the Efficiency of Evolutionary Design Optimization for Viscous Transonic Airfoils

The effect of airfoil shape parameterization on optimum design and its influence on the convergence of the evolutionary optimization process is presented. Three popular airfoil parametric methods including PARSEC, Sobieczky and B-Spline (Bezier curve) are studied and their efficiency and results are compared with those of a new method. The new method takes into consideration the characteristics...

متن کامل

Transonic and Supersonic Overtaking of a Projectile Preceding a Shock Wave

In this paper, two-dimensional and axisymmetric, time dependent transonic and supersonic flows over a projectile overtaking a moving shock wave are considered. The flow is simulated numerically by solving full time averaged Navier-Stokes equations. The equations are linearized by Newton approach. The roe’s flux splitting method, second order central difference scheme for the diffusion terms, an...

متن کامل

Aerodynamic Shape Optimization of Supersonic Wings by Adaptive Range Multiobjective Genetic Algorithms

This paper describes an application of Adaptive Range Multiobjective Genetic Algorithms (ARMOGAs) to aerodynamic wing optimization. The objectives are to minimize transonic and supersonic drag coefficients, as well as the bending and twisting moments of the wings for the supersonic airplane. A total of 72 design variables are categorized to describe the wing’s planform, thickness distribution, ...

متن کامل

The Discrete Adjoint Approach to Aerodynamic Shape Optimization

A viscous discrete adjoint approach to automatic aerodynamic shape optimization is developed, and the merits of the viscous discrete and continuous adjoint approaches are discussed. The viscous discrete and continuous adjoint gradients for inverse design and drag minimization cost functions are compared with finite-difference and complex-step gradients. The optimization of airfoils in two-dimen...

متن کامل

Two-Level Free-Form and Axial Deformation for Exploratory Aerodynamic Shape Optimization

An intuitive shape parameterization and control technique suitable for high-fidelity aerodynamic shape optimization is presented. It relies on the principles of free-form and axial deformation, enabling thorough exploration of the design space while keeping the number of design variables manageable. Surface sensitivities to the design variables are readily available; their inclusion in a highly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004